Primer on integration

Integration can be seen in two ways, though in the end they both come to the same thing (most of the time);

1) Finding the area under a curve
2) The reverse of differentiation.

We will start by dealing with 2). Although for our purposes we are more interested in 1), 2) shows us how we can actually find the integrals of a lot of common functions.

Let $f(x)$ be a function. Then the indefinite integral of $f(x)$, written $\int f(x) d x$ is a function $\mathrm{F}(\mathrm{x})$ such that $\frac{d F}{d x}=\mathrm{f}(\mathrm{x})$.

Note that, since the differential of any constant is zero, we can always add any constant to our indefinite integral.

For example, let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$. We know that if $\mathrm{F}(\mathrm{x})=\mathrm{x}^{2}$, then $\frac{d F}{d x}=2 \mathrm{x}$. But this will also be true if $F(x)=x^{2}+K$ for any constant K. So we write
$\int 2 x d X=x^{2}+K$
The constant K is called the constant of integration

Some rules for integration

You may verify these by considering the reverse process of differentiation.

1) If $\mathrm{f}(\mathrm{x})=\mathrm{a}$, a constant, then $\int f(x) d x=\mathrm{ax}+\mathrm{K}$
2) If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}$, with $\mathrm{n} \neq-1$, then $\int f(x) d x=\mathrm{x}^{\mathrm{n}+1} /(\mathrm{n}-1)+\mathrm{K}$
3) If $\mathrm{f}(\mathrm{x})=1 / \mathrm{x}$, then $\int f(x) d x=\operatorname{Ln}(\mathrm{x})+\mathrm{K}$
4) If $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ then $\int f(x) d x=\mathrm{e}^{\mathrm{x}}+K$
5) For any constant a, $\int a f(x) d x=a \int f(x) d x$
6) $\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x$
7) (Integration by parts) $\int f(x) \frac{d g}{d x} d x=f(x) g(x)-\int g(x) \frac{d f}{d x} d x$

This last one is quite complicated: if we have a product, we must express one of the terms as the differential of some other function, and hope that this will simplify things.

Example

Find $\int x e^{x} d x$
Let $f(x)=x$, let $d g / d x=e^{x}$
Then $\mathrm{df} / \mathrm{dx}=1$, and $\mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ (see rule 4)
So the answer is $\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})-\int g(x) \frac{d f}{d x} d x$
$=\mathrm{xe}^{\mathrm{x}}-\int 1 . e^{x} d x$
$=x e^{x}-e^{x}+K$.
Check: Let $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}$
Then $\frac{d f}{d x}=x e^{x}+e^{x} \cdot 1-e^{x}$
(Using the product rule for differentiation)
$=x e^{\mathrm{x}}$, as required.
8) $\int \frac{d f}{d x} g(f(x)) d x=G(f(x))$ where $\mathrm{G}(\mathrm{x})=\int g(x) d x$ (substitution rule)

Example: find $\int 2 x . e^{x^{2}} \mathrm{dx}$
Let $f(x)=x^{2}$, and $g(x)=e^{x}$. So $d f / d x=2 x$, and the function to be integrated is in the required form.

Then $G(x)=e^{x}$, so the answer to the integral is $G(f(x))=G\left(x^{2}\right)=e^{x^{2}}$. (Plus a constant of integration).

Check: Let $F(x)=e^{x^{2}}$. This can be written as $G(H(x))$ where $G(y)=e^{y}$, and $H(x)=x^{2}$. Then $d G / d y=e^{y}$, and $d H / d x=2 x$

Then using the chain rule for differentiation, $\frac{d F}{d X}=\frac{d G}{d X}(H(x)) \cdot \frac{d H}{d x}$ $=e^{x^{2}} \cdot 2 \mathrm{x}$, as required.

Definite integrals - finding the area under a curve

In statistics, we frequently need to find areas under a curve, and perform related integration. Namely, when we have a probability density function $f(X)$ for a random variable X, the probability that X lies between two values a and b is defined to be the area under the curve of $f(X)$ lying between $\mathrm{X}=\mathrm{a}$ and $\mathrm{X}=\mathrm{b}$. (See below)

How do we find the area under a curve? If the curve consists of straight lines, it is relatively easy to solve by geometric means. With a curve, the idea is to split the area up into narrow vertical strips, and find the area of a rectangle in each strip. This gives an approximation to the total area. The narrower the strips, the closer the approximation. We define the
definite integral of $\mathrm{f}(\mathrm{x})$ between a and $\mathrm{b}, \int_{X=a}^{X=b} f(X) d X$ to be the limit of these approximations as the strips get narrower. (See diagram below)

What is the meaning of the ' dX ' in the integral? It means, essentially, the width of a small strip of area under the curve, that is, a small change in X over which we are measuring the area of a strip. ('d' in maths usually refers to a change.)

When we calculate our approximate areas, the area of each strip is equal to the height $f(X)$, times the width $d X$. Hence we are taking the sum (integral) of all the strips of area $f(X) d X$, as x goes from a to b.

Integration and differentiation

Why is finding the area under a curve the reverse of differentiation?
Well, let $f(X)$ be our function that we're looking for the area under, and let $\mathrm{F}(\mathrm{x})$ be the area under the curve between $\mathrm{X}=\mathrm{a}$ and $\mathrm{X}=\mathrm{x}$.

What is $\mathrm{dF} / \mathrm{dx}$? This is the rate of change of $\mathrm{F}(\mathrm{x})$ as x increases. In other words, it is the marginal area as x increases. But this is simply equal to the height of the graph at this point, in other words, it is equal to $f(x)$. Hence $\mathrm{dF} / \mathrm{dx}=\mathrm{f}(\mathrm{x})$, so the area under the curve $\mathrm{f}(\mathrm{x})$ is found by finding a function $F(x)$ whose differential is $f(x)$.

Specifically, let $f(x)$ be a (continuous) function. Let $F(x)$ be a function such that $\mathrm{dF} / \mathrm{dx}=\mathrm{f}(\mathrm{x})$.

Then the area under the curve of $f(x)$ between a and b,
$\int_{X=a}^{X=b} f(X) d X=F(b)-F(a)$

Example

Find $\int_{x=1}^{x=4} x^{2} d x$, the area under the curve of x^{2} between $x=1$ and $x=4$.
Let $f(x)=x^{2}$
The (indefinite) integral of $f(x)$ is $F(x)=x^{3} / 3$.
Hence the area under the curve (the definite integral) is equal to $F(4)-F(1)$ $=4^{3} / 3-1^{3} / 3=64 / 2-1 / 3=21$.

Double integrals

Frequently in statistics we may need to integrate functions of two variables, for example in calculating probabilities from joint probability distributions.

A double integral is essentially the integral of an integral.
That is, if $f(X, Y)$ is a function of two variables, then we can calculate

$$
\int_{X=a}^{X=b} \int_{Y=c}^{Y=d} f(X, Y) d Y d X \text { - first we perform the inner integral, that is we }
$$

integrate the function with respect to Y , to get a function of X ; then we integrate the result with respect to X .

This can be seen as finding the volume under the surface given by $f(X, Y)$, between the bounds $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$, and $\mathrm{y}=\mathrm{c}$ to $\mathrm{y}=\mathrm{d}$.

Example

Let $\mathrm{f}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}$. Find $\int_{X=0}^{X=1} \int_{Y=0}^{Y=1} f(X, Y) d Y d X$

First we need to integrate w.r.t. Y, that is, we need to find a function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ s.t. $\frac{\partial F}{\partial Y}=\mathrm{XY}$

We may take $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}^{2} / 2$. Then $\int_{Y=0}^{Y=1} X Y d Y=\mathrm{F}(\mathrm{X}, 1)-\mathrm{F}(\mathrm{X}, 0)=\left(\mathrm{X}^{*} 1^{2}\right) / 2$ $-\left(\mathrm{X}^{*} 0^{2}\right) / 2=\mathrm{X} / 2$.

So we can now place this answer, $\mathrm{X} / 2$, into the outer integral, and find:
$\int_{X=0}^{X=1} \frac{X}{2} d X$
Let $g(x)=X / 2$. Then the integral is $G(X)=X^{2} / 4$, so that $d G / d X=g(x)$.
Hence the integral is equal to $G(1)-G(0)=1^{2} / 4=1 / 4$.

